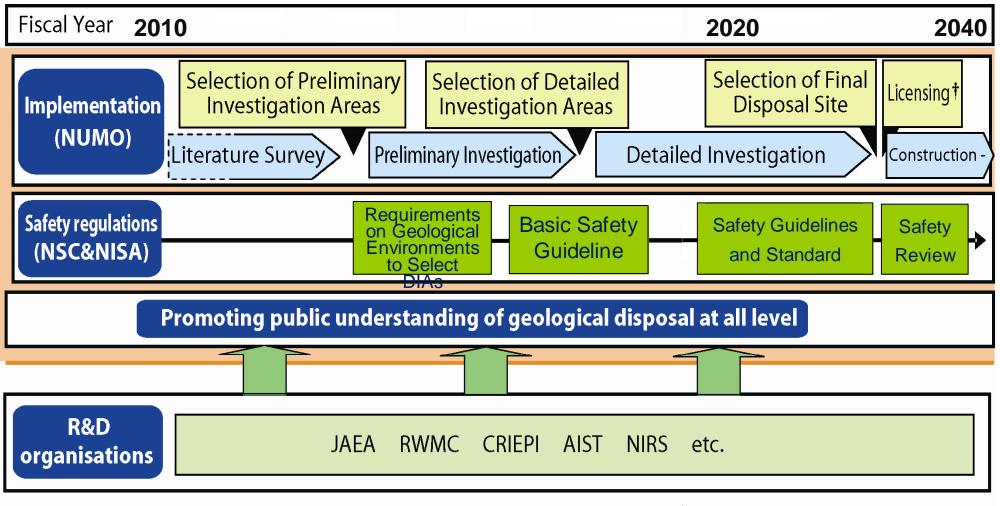


# JAEA Report: *Review and Perspective of the Safety Research for Geological Disposal of Radioactive Waste*

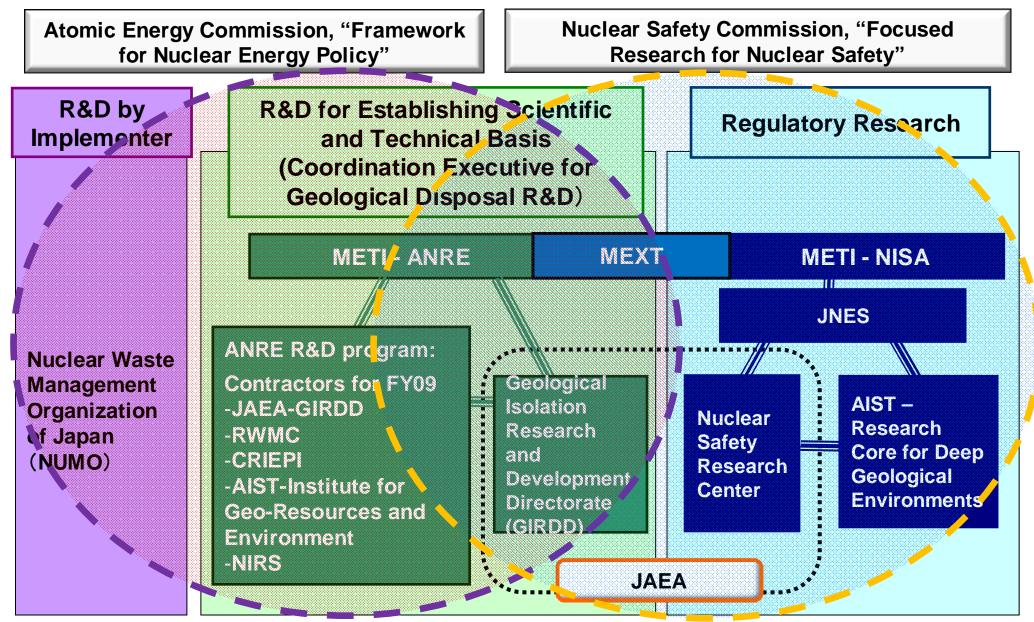

#### Nuclear Safety Forum 2010 (NSRF2010) "Perspectives of Safety Regulations and Research for Radioactive Waste Disposal" February 23, 2010 The Inoue Enryo Hall, Toyo University, Tokyo, Japan

#### Hiroyuki Umeki Japan Atomic Energy Agency

Nuclear Safety Research Forum 2010 (NSRF2010), February 23, 2010, The Inoue Enryo Hall, Toyo University, Tokyo, Japan



#### - Stepwise implementation




**†** Repository construction, operation and closure

Nuclear Safety Research Forum 2010 (NSRF2010), February 23, 2010, The Inoue Enryo Hall, Toyo University, Tokyo, Japan

# **R&D Framework for GD in Japan**





# Progress in Safety Research for GD – An Overview (1)



#### • HLW disposal

- Site investigation methodology
- Research on long-term stability of geological environment (JAEA, AIST, JNES, etc)
  - Development of investigation techniques and evaluation methods; accumulating required databases
- Hydrology and mass transport in relevant geological environments (JAEA, AIST, RWMC, CRIEPI)
  - Knowledge base and model development for regional hydrology, groundwater flow through faults, colloid-facilitated transport, and groundwater "age" determination
- Development of geological investigation methodology
  - ✓ Improvement of geosynthesis methodology (JAEA, RWMC)
  - ✓ Investigation techniques for nea-field host rock (AIST, RWMC)
- Establishment of requirements and criteria for selecting DIAs
- Development of relevant investigation technologies within two URL projects (JAEA)
- Proposed guidelines for Preliminary Investigation (JNES)
- Development of techniques for Preliminary Investigation and in-situ tests (CRIEPI)

# Progress in Safety Research for GD – An Overview (2)



#### • HLW disposal

- Approach and methodology for safety assessment
- Development of probabilistic approach and methods (JAEA, CRIEPI)
- Realistic model development for key processes (JAEA, CRIEPI, RWMC)
- Development of databases for performance assessment (JAEA, NIRS)
- Survey and review of status of international standards and guidelines and regulations in each national programs (RWMC, NSRA)
- Integrity and robustness of the EBS
- Knowledge base on long-term behaviors of EBS components (bentonite buffer, low-pH cement, etc) (JAEA, CRIEPI)
- Database development of characteristics of EBS components (JAEA)
- Evaluation of effects of repository construction on long-term performance (JAEA)
- Relevant research carried out for other waste disposal
  - Scenarios and safety analysis
  - Safety assessment methods (models, data, etc) for co-disposal of HLW and TRU waste (JAEA, JNES)
  - EBS and geosphere performance
  - TRU EBS behavior and gas migration tests (RWMC, CRIEPI)
  - Development advanced waste forms (RWMC)

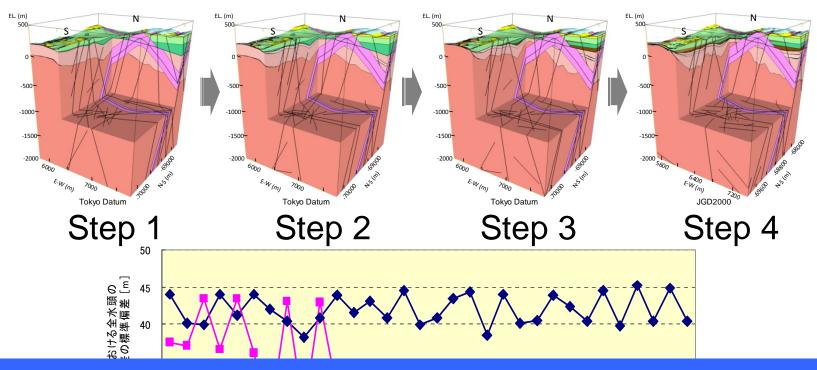
# General Overview of the Outcome of R&D (1)

- H12 (1999) and TRU-2 (2005) formed a solid basis for the demonstration of the fundamental feasibility of safe geological disposal of HLW and TRU waste in Japan: although technology has advanced significantly, the basic conclusions of this project are still valid
- This generic fundament has been complemented by subsequent work to show how implementation at a specific site could be tailored to local conditions in a manner that:
  - Takes into account local geological and topographical boundary conditions
  - Recognizes the need to ensure not only long-term safety but safety during construction and operation (and other pragmatic constraints)
  - Facilitates information transfer to all interested stakeholders and encourages development of dialogue
  - Ensures flexibility in the program to accept advances in science and technology and changes of socio-political requirements
  - Utilizes an advanced KMS, recognizing that the information explosion has surpassed the capabilities of past information management procedures

# Taking account of local geological and topographical boundary conditions



Extension of generic studies in H12 and TRU-2 for specific geological conditions at study sites


Key aspects:

- Tailoring investigation techniques and evaluation methods for the geological environment at a given site
- Extension of the repository engineering knowledge base
- Development of methods and databases to compare different sites, repository concepts and implementation options

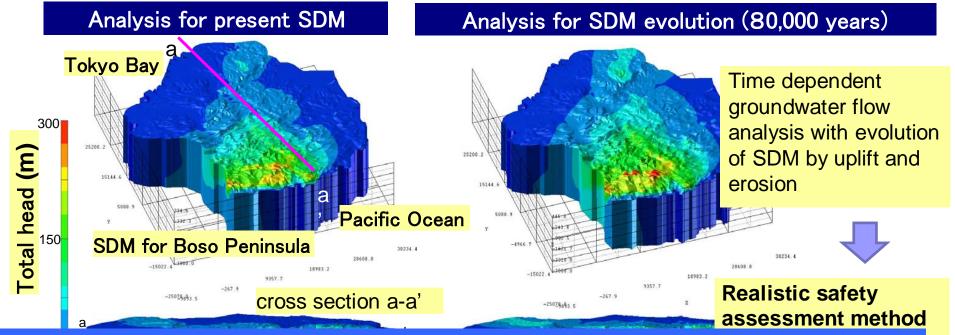
# Development of site-specific investigation techniques and evaluation methods – example



Stepwise development of Site Descriptive Model (SDM)



# Adaptive site investigation to refine the SDM within geosynthesis (Example: Mizunami URL)


3 5 7 9 11 13 15 17 19 21 23 25 27 29 3 解析ケース数[ケース]

Nuclear Safety Research Forum 2010 (NSRF2010), February 23, 2010, The Inoue Enryo Hall, Toyo University, Tokyo, Japan 7

# Development of site-specific investigation techniques and evaluation methods – example



Development of a time-dependent regional groundwater flow analysis code (3D-SEEP) and verification at a study site



Realistic regional analysis for evolution of the SDM as a result of uplift-erosion and climate change

#### **Development of the repository** engineering knowledge base – example



1.8E0



#### Development of a comprehensive buffer database; special emphasis on data for saline groundwater

## General Overview of the Outcome of R&D (2)

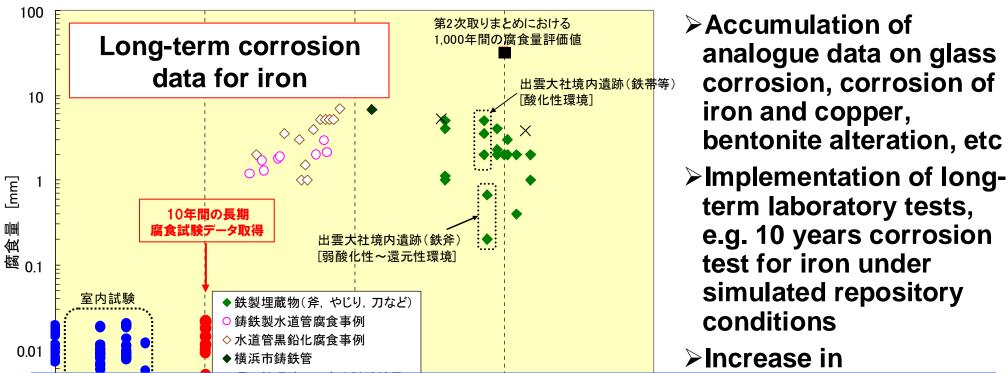
- H12 (1999) and TRU-2 (2005) formed a solid basis for the demonstration of the fundamental feasibility of safe geological disposal of HLW and TRU waste in Japan: although technology has advanced significantly, the basic conclusions of this project are still valid
- This generic fundament has been complemented by subsequent work to show how implementation at a specific site could be tailored to local conditions in a manner that:
  - Takes into account local geological and topographical boundary conditions
  - Recognizes the need to ensure not only long-term safety but safety during construction and operation (and other pragmatic constraints)
  - Facilitates information transfer to all interested stakeholders and encourages development of dialogue
  - Ensures flexibility in the program to accept advances in science and technology and changes of socio-political requirements
  - Utilizes an advanced KMS, recognizing that the information explosion has surpassed the capabilities of past information management procedures

## Demonstration test of low alkali cement



- Mitigation of effects of high pH plume from cementitious material on long-term safety
- Shotcrete
  - Test in a mock-up tunnel (FY06)
  - Planning underground in-situ test (FY07)
  - In-situ test at Horonobe URL (FY09)
- Cast-in-place concrete
  - Laboratory test for selecting composition and planning for in-situ test at Horonobe URL (FY08)

- Grout
  - Selection of composition and planning for


Development of the technical basis for practical application of low alkali cement

In-situ shotcrete demonstration test at Horonobe URL: July, 2009

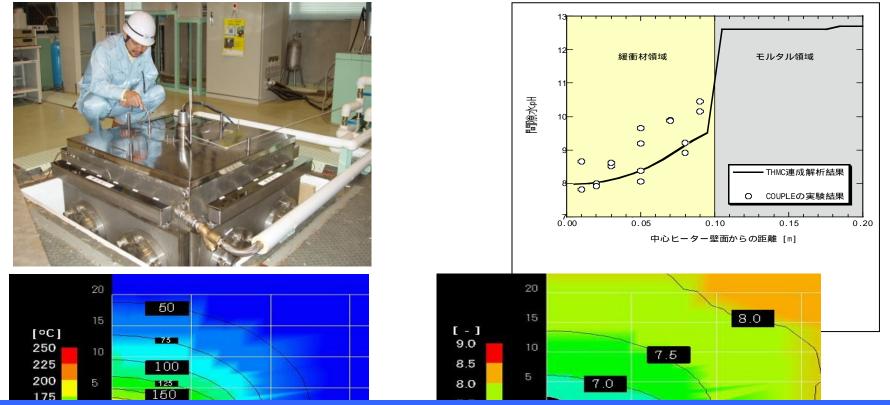
## General Overview of the Outcome of R&D (3)

- H12 (1999) and TRU-2 (2005) formed a solid basis for the demonstration of the fundamental feasibility of safe geological disposal of HLW and TRU waste in Japan: although technology has advanced significantly, the basic conclusions of this project are still valid
- This generic fundament has been complemented by subsequent work to show how implementation at a specific site could be tailored to local conditions in a manner that:
  - Takes into account local geological and topographical boundary conditions
  - Recognizes the need to ensure not only long-term safety but safety during construction and operation (and other pragmatic constraints)
  - Facilitates information transfer to all interested stakeholders and encourages development of dialogue
  - Ensures flexibility in the program to accept advances in science and technology and changes of socio-political requirements
  - Utilizes an advanced KMS, recognizing that the information explosion has surpassed the capabilities of past information management procedures

# Facilitating communication with stakeholders using analogue studies – example



0.01
• xii € xii €


## General Overview of the Outcome of R&D (4)

- H12 (1999) and TRU-2 (2005) formed a solid basis for the demonstration of the fundamental feasibility of safe geological disposal of HLW and TRU waste in Japan: although technology has advanced significantly, the basic conclusions of this project are still valid
- This generic fundament has been complemented by subsequent work to show how implementation at a specific site could be tailored to local conditions in a manner that:
  - Takes into account local geological and topographical boundary conditions
  - Recognizes the need to ensure not only long-term safety but safety during construction and operation (and other pragmatic constraints)
  - Facilitates information transfer to all interested stakeholders and encourages development of dialogue
  - Ensures flexibility in the program to accept advances in science and technology and changes of socio-political requirements
  - Utilizes an advanced KMS, recognizing that the information explosion has surpassed the capabilities of past information management procedures

#### Development of visualization and numerical analysis methods for near-field evolution



>T-H-M-C model development for the near field and numerical experiments

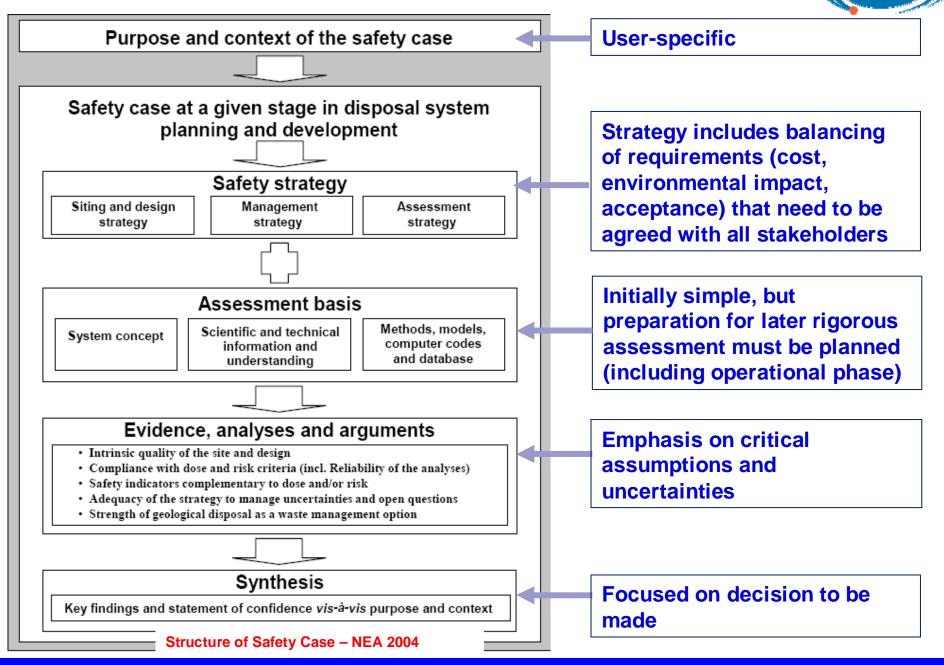


Application of advanced science and technology for realistic analysis of repository system behavior

## General Overview of the Outcome of R&D (5)

- H12 (1999) and TRU-2 (2005) formed a solid basis for the demonstration of the fundamental feasibility of safe geological disposal of HLW and TRU waste in Japan: although technology has advanced significantly, the basic conclusions of this project are still valid
- This generic fundament has been complemented by subsequent work to show how implementation at a specific site could be tailored to local conditions in a manner that:
  - Takes into account local geological and topographical boundary conditions
  - Recognizes the need to ensure not only long-term safety but safety during construction and operation (and other pragmatic constraints)
  - Facilitates information transfer to all interested stakeholders and encourages development of dialogue
  - Ensures flexibility in the program to accept advances in science and technology and changes of socio-political requirements
  - Utilizes an advanced KMS, recognizing that the information explosion has surpassed the capabilities of past information management procedures

# **KM for Geological Disposal**




- Characteristics of geological disposal
- Need to ensure safety for very long timescale
- Demonstration of safety based on a "Safety Case"
- Huge multidisciplinary knowledge base (data, information, experience and know-how, expert judgment, etc) is used to develop a Safety Case
- Need for advanced KM
- Safety Case should be built on sound scientific and technical knowledge: R&D organizations should provide this in a goal-oriented manner
- The knowledge exponentially increases and evolves in complexity as a repository program proceeds – The "Information explosion" and required integration of knowledge are a critical issue
- KM is needed to support stepwise development of Safety Case by creating, processing, updating, preserving and transferring knowledge throughout repository implementation: it should also facilitate rigorous technical QA

#### • The JAEA KMS concept

- Structuring knowledge (both explicit and tacit) according to the logical sequence of the evolving Safety Case
- Flexibility to cope with rapidly growing knowledge base
- User-friendliness to provide knowledge at different levels
- Maximum use of advanced electronic information management technology

#### Research to support a safety case



Nuclear Safety Research Forum 2010 (NSRF2010), February 23, 2010, The Inoue Enryo Hall, Toyo University, Tokyo, Japan 18

#### Integration of knowledge into a Safety Case -YMP Licensing Application Documentation



Iteration of TSPA (Total System Performance Assessment)

- •TSPA 1991, 1993, 1995
- •TSPA-VA (Viability Assessment) 1998
- •TSPA-SR (Site Recommendation) 2001
- •TSPA-LA (Licensing Application) 2008



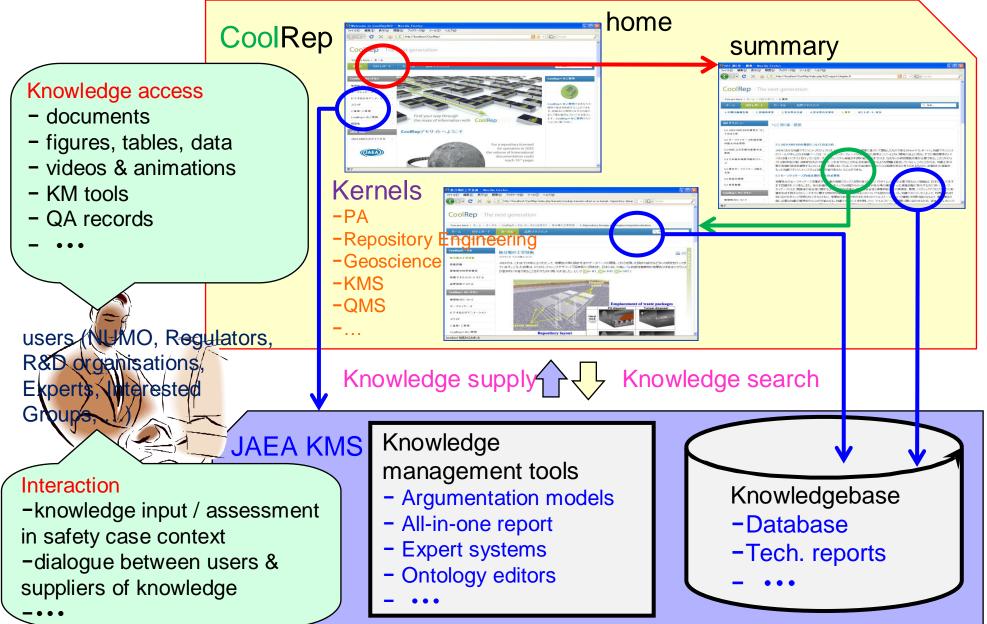


#### Supporting data and information - ~3 x 10<sup>7</sup> pages

Integration

# Information explosion in R&D supporting geological disposal in Japan ...with a limited (and aging) work force




- Over the last 2 decades, key integration and overview tasks have been carried out by teams whose experience has grown over that period
  - ...these are now completely overloaded
  - ...and most experienced members are nearing retirement
- Development of next generation KMS (JAEA-KMS) and CoolRep



Nuclear Safety Research Forum 2010 (NSRF2010), February 23, 2010, The Inoue Enryo Hall, Toyo University, Tokyo, Japan

#### Links between CoolRep and the JAEA KMS





#### Safety research – Future direction (1)



- "Focused Research for Nuclear Safety (Phase II)" (NSC, Aug. 2009)
  - Key research areas to support formulation of "Requirements of Geological Environment to Select DIAs of High-Level Radioactive Waste Disposal" and "Basic guidelines for safety review of HLW disposal" including:
    - ✓ Further development of site investigation and evaluation methods for specific sites
    - ✓ Development of repository engineering and EBS for long-lived TRU waste
    - ✓ Assessment methodology for operational and post-closure safety

#### Key aspects of the approach

- To provide a framework for integration of research results from individual areas by highlighting their contribution to increasing confidence in the safety case
- QA based on international state-of-the-art science and technology: associated timely documentation of research results
- Promotion of research common to safety aspects of different nuclear areas (extending the nuclear safety knowledge base, social science on safety regulation, risk communication methodology, etc)

#### Expectation of JAEA research

- Evaluation methods for long-term geological stability
- Extended understanding of the effects of construction on host rock conditions
- ✓ Realistic modeling of repository- and regional- scale groundwater flow
- Realistic performance evaluation of the EBS, taking long-term evolution of near-field boundary conditions into account
- ✓ Realistic modeling of radionuclide migration for specific geological environments
- ✓ Scenario development a risk-informed approach
- ✓ Development of an integrated knowledge base for geological disposal

#### Safety research – Future direction (2)



- "Regulatory research for waste treatment and disposal (FY2010 FY2014)" (NISA, Oct. 2009)
  - Research identified based on the needs of NISA for formulation of safety regulations

#### Focus of research program

- Research to support the regulatory review of the results of Preliminary Investigations and Detailed Investigations carried out by NUMO
- Research to support the regulatory process for licensing for repository construction, operation and closure

#### > Approach and organization

- To be carried out under a framework provided in NSC's Focused Research for Nuclear Safety
- ✓ The outcome will provide input for NSC discussion of regulation formulation
- ✓ The core organizations are JAEA SRC and AIST-Research Core for Deep Geological Environments
- ✓ JAEA SRC promotes collaboration with JAEA GIRDD and makes a maximum use of infrastructure, such as URL
- ✓ Utilize the results from R&D for Establishing Scientific and Technical Basis as much as possible

# Summary and Concluding Remarks



- The scientific and technical foundation based on generic studies has been extended by R&D carried out in the major areas of site investigation, engineering and safety assessment, after promulgation of the Final Disposal Act to apply to a specific site.
- Continuous development of a geological disposal KB is critical to support both repository development and regulation formulation by integrating results from a diverse range of R&D.
- For this purpose, JAEA has been developing an advanced KMS linked with a "next-generation" documentation approach.
- In the KMS, individual R&D areas are structured by, and related to, knowledge supporting development and review of a safety case: this makes the R&D goals clearer to all involved.
- Future directions for the next five years have been identified in the NSC and NISA safety research programs: these will promote research activities in more integrated and focused manner.



# Thank you for your attention!

... with thanks to Dr. Shinichi Nakayama of JAEA Nuclear Safety Research Center for his valuable input to this presentation